

Physical Geography: Landforms

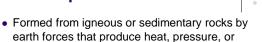
Chapter 3

Overview

- Earth Materials
 - Igneous, sedimentary, metamorphic rocks
- Geologic Time
- · Movements of the Continents
- Tectonic Forces
- Gradational Processes
- Glaciers

Igneous Rocks

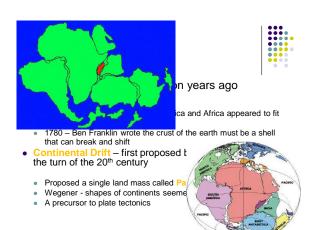
- Formed by the cooling and solidification of molten rock
- Magma: molten rock below ground
 - Cooling forms intrusive igneous rocks
 Granite
- Lava: molten rock above ground
 - Cooling forms extrusive igneous rocks
 - Basalt, pumice, obsidian
 - Rapid cooling obsidian, pumice
- Slower cooling granite



Sedimentary Rocks

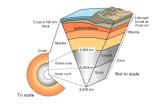
- Composed of particles of gravel, sand, silt, and clay eroded from other rocks
- Surface water carries sediment to collection
 areas:
 - oceans, marshes, lakes or tidal basins
 - Compressed by weight of additional deposits
 - Type of sediment determines rock type
 - Large, rounded particles conglomerates
 - Sand sandstone
 - Silt and clay shale or siltstone
 - Organic materials limestone or coal

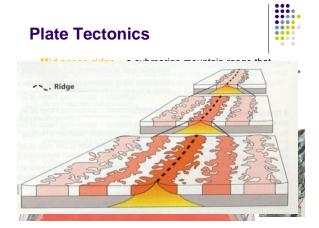
Metamorphic Rocks

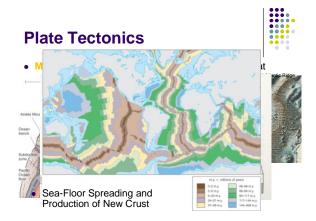


- · Mineral structure is changed
 - Shale becomes slate

chemical reactions


- Limestone may become marble
- Granite may become gneiss
 - This occurs at great depths exposed only after erosion = among oldest rocks on Earth.
- Rock Cycle old rocks are continually made into new rocks by the two processes that alter rocks:
 - Building landforms & Wearing landforms down





Movements of the Continents

- Plate tectonics theory
 - Asthenosphere
 - Partially molten layer above the core and lower mantle
 - Lithosphere
 - Outermost layer of the earth (the crust and upper mantle)
 - 12 large and numerous small plates that slide or drift slowly over the asthenosphere

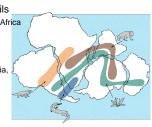
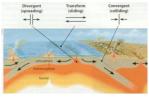


Plate Tectonics

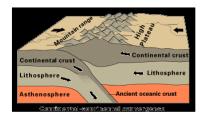


- Besides tectonic theory, there is also fossil evidence that the continents were once part of a larger landmass.
 - Animals and plants fossils
 - found in South America & Africa
 - Africa & India
 - Antarctica & Australia
 - Africa, India & Antarctica
 - South America, Africa, India, Antarctica & Australia

Plate Tectonics

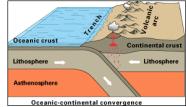
- . There are two types of tectonic plates:
 - 1. continental plates older, thicker and more buoyant
 - 2. oceanic plates younger and denser
 - These tectonic plates interact with neighboring plates in 3 manners:
 - Divergent (spreading)
 - Convergent (colliding)
 - Transform (sliding)

Plate Tectonics

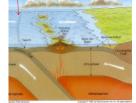


- Convergent Plate Boundaries are the result of the direct collision of one plate into another.
 - There are three different types of convergent plate boundaries:
 - 1. Continental / Continental
 - 2. Oceanic / Continental
 - 3. Oceanic / Oceanic
 - Each resulting in a unique geologic feature........

Convergent Plate Boundaries


- Continental / Continental Convergence
 - When a collision occurs between two continental plates the colliding edges are crumpled and uplifted
 - producing large mountain ranges.

Convergent Plate Boundaries


- Oceanic / Continental Convergence more dense oceanic plated is <u>subducted</u>, or forced beneath the less dense continental plate – the uplifted continental plate forms mountains.
 - Trench forms along the subduction zone

Convergent Plate Boundaries

- Oceanic / Oceanic Convergence When two oceanic plates collide a deep ocean trench forms when one of the plates is subducted.
 - The subducted plate melts and the molten rock rises to the surface, along the trench to form a chain of volcanic islands called an island arc.

Convergent Plate Boundaries

- **Transform Fault Boundaries** two plates slide past each other
- · The plate edges do not slide smoothly - dramatic, sudden movements result in earthquakes.
- Ex. San Andreas Fault

Earthquake & Volcano Activity

• Earthquake & volcanic activity is associated with these different types of fault lines - where plate boundaries collide

Te • D rock 2.2-2.5 m.y. to or

Gradational Processes

- Gradational Forces forces that scour, wash, and wear down the Earth's surface.
 - External forces
- Reduction of the land's surface
 - Weathering
 - Mass movement
 - Erosion

Weathering

- · Processes that fragment and decompose rock
 - Mechanical
 - Physical disintegration
 - Frost action expansion of water in cracks
 - · Salt crystals evaporation of water, leaves salt crystals
 - Root action tree roots get into joints and break rock as it grows

 - Decomposition as a result of chemical reactions
 - Oxidation oxygen combines with iron which decomposes rock
 - Hvdrolysis chemical reaction when water and minerals interact
 - Carbonation carbon dioxide in the atmosphere dissolves in water, creating acid, which decomposes the rock.

Mass Movement

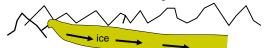
- · Downslope movement of material due to gravity
 - Avalanches

Glaciers

■ most recent Ice Age – 1.75 million to 11,000 years ago

Formation of Lower Hudson & Long Island

- River erosion carved out the coastal plain to form Long Island Sound Basin (<3 mya)
- Glaciers reshaped the area (beginning 3 mya)
- . The last ice advance deposited terminal moraine in middle of Long Island
- Recessional moraines (along North Shore of Long Island) were left as glacier receded


Glaciers

- Glacier: mass of ice composed of compacted snow and recrystallized snow
 - flowing under its own weight under the force of gravity.

Types of Glaciers

- 1. Valley/Alpine Glaciers: confined to mountain valleys
- Flow down hill
- Few km wide by 10's of km long by several 100 m thick
- Ex: Alaskan Alpine Glaciers 2 km wide x 120 km long x 400 m thick

1. Valley/Alpine Glaciers

Types of Glaciers

- Flow out horizontally in every direction from where the snow accumulates the most
 - a) Continental Glaciers:
 - Largest: 100s of km long/wide by 3-5 km
 - Ex: Greenland, Antarctica (now) and North America during the last ice age 25,000 years ago (what covered Long Island)

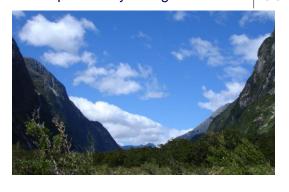
Glacial Eroded Landforms

- Erosion: glaciers carry the sediment within the ice AND grind/polish bedrock via abrasion (rock within the ice grinds below the glacier).
- The plucking and grinding creates the following landforms (become visible after the ice is gone):

Glacial Polish

smooth bedrock (that shines in reflected light.

Glacial Striations



Big Grooves

4. U-Shaped Valley/Trough:

Fjords = Submerged U-Shaped Valley

Glacial Deposits:

Drift = all glacial sediment (2 types)

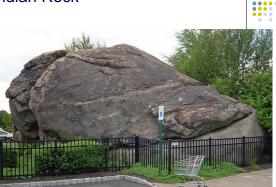
Glacial till: unsorted and unstratified
 Directly deposited by the glacier (like a

bulldozer) so it is ur (no layers)

Unsorted mixture of clay, soil, sand, gravel and boulders at Ronkonkoma moraine.

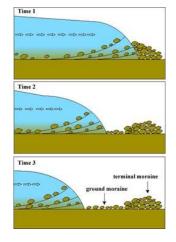
Glacial Deposits:

 2. Outwash = Stratified Drift: deposited by glacial meltwater – it tends to be sorted and


stratified

Till Landforms

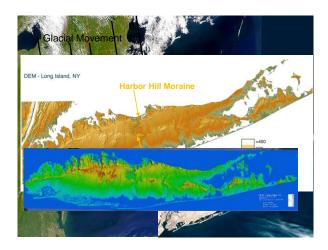
Indian Rock



Moraines

- Long Island, Block Island, Nantucket and Martha's Vineyard islands (MA) are terminal or end moraines that marked the end of massive glaciers.
- They are composed of material carried by glaciers from the interior of the continent.

End Moraine: form beyond the ice front



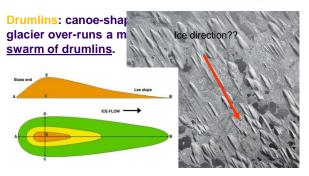
Ground Moraine

material pushed under and compacted under the glacier.

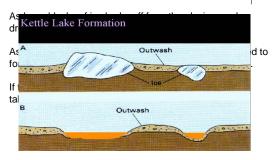
Ronkonkoma Moraine

- runs into the South Fork, extending into the ocean past Montauk Point.
- Harbor Hill Moraine most recent glacial retreat, running across the North Shore through the North Fork.

Jayne's Hill


401 feet (122 m), is the highest hill on Long

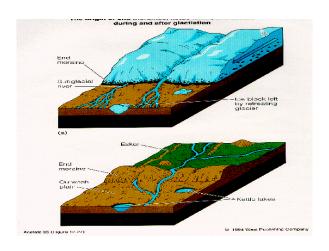
Island


Till Landforms

Kettle Lakes

Lake Success

Scuttle Hole, Bridgehampton


Lake Ronkonkoma

Eskers

